Abstract

AbstractAn understanding of the behavior of wood stud walls in a region corresponding to hazardous-blowout damage levels is currently lacking. The focus of the current study is on investigating the flexural response of full-scale wood stud walls subjected to pressure-impulse combinations that would yield severe damage levels. Static material properties were determined and used as input in an analytical model that considers the nonlinear behavior of stud-to-sheathing joints, as well as high strain-rate effects. Experimental results showed that premature sheathing failure could occur prior to full flexural stud response, and that sheathing panel debris could be generated. The use of thicker sheathing and screws shifted the failures to the studs, while decreasing the amount of debris. Welded wire mesh was successfully used as a reinforcement of the sheathing or as a catcher system while maintaining the residual axial capacity of the studs. A single-degree-of-freedom material-predictive model was successfully...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call