Abstract

Glycolaldehyde, HOCH2CHO, is an important multifunctional atmospheric trace gas formed in the oxidation of ethylene and isoprene and emitted directly from burning biomass. The initial step in the atmospheric photooxidation of HOCH2CHO yields HOCH2CO and HOCHCHO radicals; both of these radicals react rapidly with O2 in the troposphere. This study presents a comprehensive theoretical investigation of the HOCH2CO + O2 and HOCHCHO + O2 reactions using high-level quantum chemical calculations and energy-grained master equation simulations. The HOCH2CO + O2 reaction results in the formation of a HOCH2C(O)O2 radical, while the HOCHCHO + O2 reaction yields (HCO)2 + HO2. Density functional theory calculations have identified two open unimolecular pathways associated with the HOCH2C(O)O2 radical that yield HCOCOOH + OH or HCHO + CO2 + OH products; the former novel bimolecular product pathway has not been previously reported in the literature. Master equation simulations based on the potential energy surface calculated here for the HOCH2CO + O2 recombination reaction support experimental product yield data from the literature and indicate that, even at total pressures of 1 atm, the HOCH2CO + O2 reaction yields ∼11% OH at 298 K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.