Abstract

Metals have been used for many years in medicine, particularly for the treatment of cancer. Cisplatin is one of the most used drugs in the treatment of cancer. Although platinum-containing therapeutics have unparalleled efficacy in cancer treatment, they are coupled with adverse effects and the development of tumour resistance. This has led to the exploration of other metal-based modalities including ruthenium-based compounds. Thus, in our previous study, we synthesized and characterized a novel ruthenium (II) complex (referred to herein as GA113) containing a bis-amino-phosphine ligand. The complex was subsequently screened for its anti-cancerous potential against a human malignant melanoma A375 cell line and findings revealed favourable cytotoxicity. In the current study, a nuclear magnetic resonance (NMR)-based cellular metabolomics approach was applied to probe the possible mechanism of GA113 in A375 cells. In addition, other biological assays including light microscopy, Hoechst-33258 and MitoTracker Orange CM-H2TMRos stain were used to assess cellular viability and apoptosis in GA113-treated cells. Consequently, multivariate statistical data analysis was applied to the metabolomic data to identify potential biomarkers. Six signatory metabolites were altered after treatment. Changes in these metabolites were linked to two metabolic pathways, which include the alanine, aspartate, and glutamate metabolic pathway as well as the glycine, serine, and threonine pathway. By means of an NMR-based metabolomic approach, we identified the potential mechanism of action of complex GA113 in A375 cancer cells thus providing new insights into the metabolic pathways affected by complex GA113 and establishing a foundation for further development, research, and eventual application in cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call