Abstract
The efficacy of the variance equality test in steady-state gait analysis is well documented; however, temporal information on where differences in variability occur during gait subtasks, especially during gait termination caused by unexpected stimulation, is poorly understood. Therefore, the purpose of the current study was to further verify the efficacy of the waveform-level variance equality test in gait subtasks by comparing temporal kinematical variability between planned gait termination (PGT) and unplanned gait termination (UGT) caused by unexpected stimulation. Thirty-two asymptomatic male subjects were recruited to participate in the study. A Vicon motion capture system was utilized to measure lower extremity kinematics during gait termination tasks with and without unexpected stimulation conditions. The F-statistic for each interval of the temporal kinematic waveform was compared to the critical value using a variance equality test to identify significant differences in the waveform. Comparative tests between two types of gait terminations found that subjects may exhibit greater kinematics variance in most lower limb joints during UGT caused by unexpected stimulation (especially at stimulus delay and reaction phases). Significant greater variances during PGT were exhibited only in the MPJ sagittal and frontal planes at the early stimulus delay phase (4-15% and 1-15%). This recorded dataset of temporal kinematic changes caused by unexpected stimuli during gait termination is essential for interpreting lower limb biomechanical function and injury prediction in relation to UGT. Given the complexity of the gait termination task, which involves both internal and external variability, the variance equality test can be used as a valuable method to compare temporal differences in the variability of biomechanical variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.