Abstract
Abstract This paper proposes a suitable orbit design for the lower pair of ESA's Swarm constellation mission, flying side-by-side in near-polar and circular orbits with a separation of only 1.4° at ascending node. Both orbits are suggested to be frozen orbits to minimize the evolution, and an along-track separation strategy is applied to avoid collision risk. The characteristics of the proposed orbit type are examined through numerical techniques including high-fidelity perturbation models. The prime change from the initial configuration is an along-track separation. The perturbations causing the along-track drift are analyzed by switching on/off certain perturbations. The results indicate that the tesseral harmonics and the atmospheric drag yield dominant effects. The atmospheric drag effect shows a dependence on the local time of the ascending node. From two months of orbit propagation for the altitude 300 km the maximum along-track drift we obtain is about 80 km, which is still within the measurement requirement range. Several maneuver strategies for maintaining the proposed orbit design are suggested. The results analyzed for the proposed orbit design show that collision risk can be avoided by along-track separation within the frozen orbit design. Consequently, this combination is considered as a suitable approach for Swarm's lower pair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.