Abstract

In musicology, there has been a long debate about a meaningful partitioning and description of music history regarding composition styles. Particularly, concepts of historical periods have been criticized since they cannot account for the continuous and interwoven evolution of style. To systematically study this evolution, large corpora are necessary suggesting the use of computational strategies. This article presents such strategies and experiments relying on a dataset of 2000 audio recordings, which cover more than 300 years of music history. From the recordings, we extract different tonal features. We propose a method to visualize these features over the course of history using evolution curves. With the curves, we re-trace hypotheses concerning the evolution of chord transitions, intervals, and tonal complexity. Furthermore, we perform unsupervised clustering of recordings across composition years, individual pieces, and composers. In these studies, we found independent evidence of historical periods that broadly agrees with traditional views as well as recent data-driven experiments. This shows that computational experiments can provide novel insights into the evolution of styles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call