Abstract
We present the structure, biological activity, peptide composition, and emulsifying properties of pea protein isolate (PPI) after hydrolysis by cell envelope proteinase (CEP) from Lactobacillus delbrueckii subsp. bulgaricus. Hydrolysis resulted in the unfolding of the PPI structure, characterized by an increase in fluorescence and UV absorption, which was related to thermal stability as demonstrated by a significant increase in ΔH and the thermal denaturation temperature (from 77.25 ± 0.05 to 84.45 ± 0.04 °C). The hydrophobic amino acid of PPI significantly increased from 218.26 ± 0.04 to 620.77 ± 0.04 followed by 557.18 ± 0.05 mg/100 g, which was related to their emulsifying properties, with the maximum emulsifying activity index (88.62 ± 0.83 m2/g, after 6 h hydrolysis) and emulsifying stability index (130.77 ± 1.12 min, after 2 h hydrolysis). Further, the results of LC-MS/MS analysis demonstrated that the CEP tended to hydrolyze peptides with an N-terminus dominated by Ser and a C-terminus dominated by Leu, which enhanced the biological activity of pea protein hydrolysates, as supported by their relatively high antioxidant (ABTS+ and DPPH radical scavenging rates were 82.31 ± 0.32% and 88.95 ± 0.31%) and ACE inhibitory (83.56 ± 1.70%) activities after 6 h of hydrolysis. 15 peptide sequences (score > 0.5) possessed both antioxidant and ACE inhibitory activity potential according to the BIOPEP database. This study provides theoretical guidance for the development of CEP-hydrolyzed peptides with antioxidant and ACE inhibitory activity that can be used as emulsifiers in functional foods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.