Abstract
This article addresses the investigation of the relationship between neural shape and function in cat retinal ganglion cells in terms of representative morphological features. More specifically, a series of geometrical measures is extracted from two-dimensional images of these cells, and pattern recognition methods are applied in order to quantify the differentiation between the two classes (i.e., alpha, beta). The morphological measures cover several of the more meaningful geometrical features of neuronal cells, including: (a) the distribution of angles along the cell contours considering several smoothing degrees; (b) the overall interaction between the cell arborization and the surrounding space, quantified in terms of the multiscale fractal dimension; and (c) the distribution of width and extent of the dendritic processes. Several combinations of such morphological measures are assessed with respect to the separability of the classes. The obtained results indicate that the methods based on statistic relation between segment length and segment diameter, and the method of multiscale angle entropy not only successfully encapsulated a large amount of experimental data into relatively compact patterns but also marked off various ganglion cells into befit groups. On the other hand, the method of neuron classification based on fractal dimension resulted relatively less effective for class separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.