Abstract

The neural basis of emotional processing has been largely investigated in constrained spatial environments such as stationary EEGs or fMRI scanners using highly artificial stimuli like standardized pictures depicting emotional scenes. Typically, such standardized experiments have low ecological validity and it remains unclear whether their results reflect neuronal processing in real-life affective situations at all. Critically, emotional situations do not only encompass the perception of emotions, but also behavioral components associated with them. In this study, we aimed to investigate real-life emotions by recording couples in their homes using mobile EEG technology during embracing, kissing and emotional speech. We focused on asymmetries in affective processing as emotions have been demonstrated to be strongly lateralized in the brain. We found higher alpha and beta power asymmetry during kissing and embracing on frontal electrodes during emotional kisses and speech compared to a neutral control condition indicative of stronger left-hemispheric activation. In contrast, we found lower alpha power asymmetry at parieto-occipital electrode sites in the emotional compared to the neutral condition indicative of stronger right-hemispheric activation. Our findings for alpha power asymmetries are in line with models of emotional lateralization that postulate a valence-specific processing over frontal cortices and right-hemispheric dominance in emotional processing in parieto-occipital regions. In contrast, beta power asymmetries pointed more towards valence-specific processing indicating that, while alpha and beta frequencies seem to be functionally associated, they are not reflecting identical cognitive processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.