Abstract

Psoriatic arthritis (PsA) is an inflammatory arthritis associated with psoriasis. PsA disease involves flares, which are associated with increased joint inflammation and tissue remodeling. There is a need for identifying biomarkers related to PsA disease activity and flares to improve the management of PsA patients and decrease flares. The tissue turnover imbalance that occurs during the inflammatory and fibro-proliferative processes during flares leads to an increased degradation and/or reorganization of the extracellular matrix (ECM), where increased proteolysis plays a key role. Hence, protease-mediated fragments of inflammatory and tissue-remodeling components could be used as markers reflecting flares in PsA patients. A broad panel of protease-mediated biomarkers reflecting inflammation and tissue remodeling was measured in serum and synovial fluid (SF) obtained from PsA patients experiencing flares (acutely swollen joint[s], PsA-flare). In serum, biomarker levels assessed in PsA-flare patients were compared to controls and in early-diagnosed PsA patients not experiencing flares (referred to as PsA without flare). Furthermore, the biomarker levels assessed in SF from PsA-flare patients were compared to the levels in SF of osteoarthritis (OA) patients. In serum, levels of the PRO-C3 and C3M, reflecting formation and degradation of the interstitial matrix, were found significantly elevated in PsA-flare compared to controls and PsA without flare. The remodeling marker of the basement membrane, PRO-C4, was significantly elevated in PsA-flare compared to PsA without flare. The inflammation and immune cell activity related markers, CRPM, VICM, and CPa9-HNE were significantly elevated in PsA-flare patients compared to controls and PsA without flare. In addition, VICM (AUC = 0.71), CPa9-HNE (AUC = 0.89), CRPM (AUC = 0.76), and PRO-C3 (AUC = 0.86) showed good discriminatory performance for separating PsA-flare from PsA without flare. In SF, the macrophage activity marker, VICM, was significantly elevated whereas the type II collagen formation marker, PRO-C2, was significantly reduced in the PsA-flare compared to OA. The combination of five serum markers reflecting type III and IV collagen degradation (C3M and C4M, respectively), type III and VI collagen formation (PRO-C3 and PRO-C6, respectively), and neutrophil activity (CPa9-HNE) showed an excellent discriminatory performance (AUC = 0.98) for separating PsA-flare from PsA without flares. The serum biomarker panel of C3M, C4M, PRO-C3, PRO-C6, and CPa9-HNE reflecting synovitis, enthesitis, and neutrophil activity may serve as novel tool for quantitatively monitoring flares in PsA patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call