Abstract
Wing-in-Ground (WIG) effect aircraft are gaining attention for their potential in reducing environmental impact. However, optimising wing planforms based solely on aerodynamics might improve performance while compromising static height stability of WIG aircraft. This study investigates the effects of planar and nonplanar wing planform optimisation for regional transport ground effect aircraft. Three distinct multiobjective wing planform optimisations are explored: planar wing optimisation, nonplanar wing optimisation, and nonplanar wingtip optimisation. These optimisations assess the impact on both aerodynamic efficiency and static height stability characteristics of a wing planform in ground effect, at three different flying altitudes. In extreme ground effect, the Pareto set includes wings with negative spanwise camber, enhancing both cushion sensation and aerodynamic efficiency by effectively utilizing ground effect, thus proving advantageous over planar wing configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.