Abstract
Solar power integration in electrical grids is complicated due to dependence on volatile weather conditions. To address this issue, continuous research and development is required to determine the best machine learning (ML) algorithm for PV solar power output forecasting. Existing studies have established the superiority of the artificial neural network (ANN) and random forest (RF) algorithms in this field. However, more recent studies have demonstrated promising PV solar power output forecasting performances by the decision tree (DT), extreme gradient boosting (XGB), and long short-term memory (LSTM) algorithms. Therefore, the present study aims to address a research gap in this field by determining the best performer among these 5 algorithms. A data set from the United States’ National Renewable Energy Laboratory (NREL) consisting of weather parameters and solar power output data for a monocrystalline silicon PV module in Cocoa, Florida was utilized. Comparisons of forecasting scores show that the ANN algorithm is superior as the ANN16 model produces the best mean absolute error (MAE), root mean squared error (RMSE) and coefficient of determination (R 2) with values of 0.4693, 0.8816 W, and 0.9988, respectively. It is concluded that ANN is the most reliable and applicable algorithm for PV solar power output forecasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Computational Fluid Mechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.