Abstract

Selection and thermal stability of phases are important in design of high entropy alloys (HEA). In this study, phase formations in cast AlFeCoNiCu HEA were investigated. Ab-initio molecular dynamics (AIMD) simulations were used to determine crystal structures of phases at different temperatures in equiatomic composition of AlFeCoNiCu. The AIMD results showed a possible coexistence of a face-centered cubic (fcc) phase and a body-centered cubic (bcc) phase at the room temperature and indicated stabilization of a single fcc phase above 1070K at the equiatomic composition of AlFeCoNiCu. The phase diagrams of AlFeCoNiCu system were calculated using a modified thermodynamic approach based on CALPHAD and Muggianu's methods. The calculated phase diagrams showed formation of the same two phases at the room temperature, and a phase transformation at about 1010K to form a single fcc phase. The characterization experiments utilizing scanning electron microscopy (SEM), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD) confirmed the crystal structures and composition of phases determined by AIMD simulations and phase diagram calculations. High temperature XRD (HTXRD) analysis showed a significant increase in weight fraction of the fcc phase at high temperatures confirming the predicted phase transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call