Abstract

SERS, a clinical practice where medical doctors can monitor the drug concentration in biological fluids, has been proposed as a viable approach to therapeutic drug monitoring (TDM) of the antiepileptic drug Perampanel. The adoption of an acidic environment during the SERS experiments was found to be effective in enhancing the spectroscopic signal. In this work, we combine SERS experiments, conducted with a custom spinning cell in controlled acidic conditions, with DFT calculations aimed at investigating the possible protonated forms of Perampanel. The DFT-simulated Raman spectra of protonated Perampanel accounts for most of the observed SERS signals, thus explaining the effective role of protonation of the analyte. Our results suggest protonation as a viable approach to fostering SERS of alkaline drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.