Abstract

Small mammals hibernate to deal with environmental conditions associated with the winter season. Numerous physiological changes occur during a typical torpor-arousal cycle including variations in heart rate and blood flow. Such cycle possesses characteristics of ischemia-reperfusion cycles that can lead to oxidative stress in non-hibernating models. Interestingly, hibernators can cope with these conditions and the complete molecular picture underlying this adaptation is not fully understood. Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), can impact expression and activity of various targets and have been associated with oxidative stress response. This work was aimed at assessing expression of oxidative stress-associated non-coding RNAs and their targets during hibernation. Measurement of miRNAs miR-93, miR-141, miR-144 and miR-200a, lncRNAs Mhrt and ODRUL, as well as of several targets associated with the Nrf2 signaling cascade including Keap1 was conducted using qRT-PCR in hibernating hearts of the thirteen-lined ground squirrel, Ictidomys tridecemlineatus. Elevated Nrf2 levels and reduced miR-200a levels were notably observed in hibernating versus euthermic samples. Functional analysis of targets predicted to be regulated by the investigated miRNAs was performed and revealed transcriptional regulation and phosphorylation as relevant processes. These results highlight a potential interplay between non-coding RNAs and targets associated with oxidative stress response during hibernation and further strengthen the underlying importance of non-coding RNAs in cold torpor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.