Abstract

BackgroundInflammatory respiratory diseases are amongst major global health challenges. Lung fibroblasts have been shown to play a key role in lung inflammatory responses. However, their exact role in initiation and maintenance of lung diseases has remained elusive partly due to the limited availability of physiologically relevant in vitro models. Therefore, developing new tools that enable investigating the molecular pathways (e.g. nuclear factor-kappa B (NF-κB) activation) that underpin inflammatory responses in fibroblasts could be a valuable resource for scientists working in this area of research.ResultsIn order to investigate NF-κB activation in response to pro-inflammatory stimuli in real-time, we first developed two detection systems based on nuclear localization of NF-κB by immunostaining and luciferase reporter assay system. Furthermore using electrospun porous scaffolds, with similar geometry to human lung extracellular matrix, we developed 3D cultures of lung fibroblasts allowing comparing NF-κB activation in response to pro-inflammatory stimuli (i.e. TNF-α) in 2D and 3D. Our data clearly show that the magnitude of NF-κB activation in 2D cultures is substantially higher than 3D cultures. However, unlike 2D cultures, cells in the 3D model remained responsive to TNF-α at higher concentrations. The more subdued and wider dynamic range of NF-κB responses in 3D culture system was associated with a different expression pattern for TNF receptor I in 3D versus 2D cultures collectively reflecting a more in vivo like TNF receptor I expression and NF-κB activation pattern in the 3D system.ConclusionOur data suggest that lung fibroblasts are actively involved in the pathogenesis of lung inflammation by activation of NF-κB signaling pathway. The 3D culture detection system provides a sensitive and biologically relevant tool for investigating different pro-inflammatory events involving lung fibroblasts.

Highlights

  • Inflammatory respiratory diseases are amongst major global health challenges

  • Fibroblasts have been shown to produce a plethora of inflammatory mediators such as Interleukin-8 (IL-8), monocyte chemoattractant protein (MCP-1,3,4), macrophage inflammatory protein-1-alpha (MIP-1-α), eotaxin, granulocyte monocyte colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF) and transforming growth factor-beta (TGF)-β during the acute and chronic phase of lung inflammation[6,7,8,9]

  • Development of Three dimensional (3D) culture system using non-degradable Polyethylene terephthalate (PET) electrospun scaffold For developing the 3D cultures, we electrospun PET nanofibers into fiber mats that were used for culturing fibroblasts in 3D

Read more

Summary

Introduction

Lung fibroblasts have been shown to play a key role in lung inflammatory responses. Their exact role in initiation and maintenance of lung diseases has remained elusive partly due to the limited availability of physiologically relevant in vitro models. Htwe et al Respiratory Research (2015) 16:144 are under the control of nuclear factor kappa B (NF-κB), which plays a central role in regulating the expression of many genes involved in inflammation [10]. Fibroblasts can proliferate and have the potential to transform into myofibroblasts [11, 12] This could be in response to the cytokines produced by other cells (e.g. epithelial cell or monocytes) or through direct response to injury or exogenous stimuli [13, 14]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.