Abstract

As an available cell line, mouse pluripotent P19 has been widely employed for neuronal differentiation studies. In this research, by applying the in vitro differentiation of this cell line into neuron-like cells through retinoic acid (RA) treatment, the roles of some genes including DNMT3B, ICAM1, IRX3, JAK2, LHX1, SOX9, TBX3 and THY1 in neural differentiation was investigated. Bioinformatics, microscopic, and transcriptional studies were conducted in a time-dependent manner after RA-induced neural differentiation. According to bioinformatics studies, we determined the engagement of the metabolic and developmental super-pathways and pathways in neural cell differentiation, particularly focusing on the considered genes. According to our qRT-PCR analyses, JAK2, SOX9, TBX3, LHX1 and IRX3 genes were found to be significantly overexpressed in a time-dependent manner (p < 0.05). In addition, the significant downregulation of THY1, DNMT3B and ICAM1 genes was observed during the experiment (p < 0.05). The optical microscopic investigation showed that the specialized extensions of the neuron-like cells were revealed on day 8 after RA treatment. Accordingly, the neural differentiation of P19 cell line and the role of the considered genes during the differentiation were proved. However, our results warrant further in vivo studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call