Abstract

The continuous increase in the complexity of data networks has motivated the development of more effective Multistage Interconnection Networks (MINs) as important factors in providing higher data transfer rates in various switching divisions. In this paper, semi-layer omega-class networks operating with a cut-through forwarding technique are chosen as test-bed subjects for detailed evaluation, and this network architecture is modelled, inspected, and simulated. The results are examined for relevant singlelayer omega networks operating with cut-through or ‘store and forward’ forwarding techniques. Two series of experiments are carried out: one concerns the case of uniform traffic, while the other is related to hotspot traffic. The results quantify the way in which this network outperforms the corresponding singlelayer network architectures for the same network size and buffer size. Furthermore, the effects of the dimensions of the switch elements and their corresponding reliability on the overall interconnection system are investigated, and the complexity and the relevant cost are examined. The data yielded by this investigation can be valuable to MIN engineers and can allow them to achieve more productive networks with lower overall implementation costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.