Abstract

Abstract A detailed geomorphologic and shallow stratigraphic interpretation was performed in three different geomorphological domains of the ultra-deepwater region of the central Gulf of Mexico (GOM) using a set of high resolution bathymetry and subbottom profiles that were acquired at four major oil fields in the Green Canyon and Mississippi Canyon protraction areas. The seafloor expression of the study areas allowed defining three different geomorphological provinces: Minibasin, Sigsbee Escarpment and Disconnected Canopy Province. The geomorphological expression of these provinces is primarily the result of the dynamic behavior of the underlying salt, in which these regions experienced different degrees and types of substrate deformation. Structural deformation affecting these areas has been very dynamic through time enhancing the occurrence of both regional and localized gravity-induced deposits. Regions of high relief along diapiric slopes (e.g.: Sigsbee Escarpment) are affected by headwall failures and the near seafloor stratigraphy reveals the complex dynamic of eroded and re-deposited sediments that have been affected by both gravity- and current-driven processes. This study seeks to improve our understanding of how local bathymetric variabilities (linked to underlying structural controls) interact with gravity-driven and current-controlled processes in the ultra-deepwater region of the GOM to generate the near seafloor stratigraphic record that is observable in our study areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call