Abstract

A critical understanding of the water crisis of Lake Urmia is the driver in this paper for a basin-wide investigation of its Meteorological (Met) droughts and Groundwater (GW) droughts. The challenge is to formulate a data-driven modelling strategy capable of discerning anthropogenic impacts and resilience patterns through using 21-years of monthly data records. The strategy includes: (i) transforming recorded timeseries into Met/GW indices; (ii) extracting their drought duration and severity; and (iii) deriving return periods of the maximum drought event through the copula method. The novelty of our strategy emerges from deriving return periods for Met and GW droughts and discerning anthropogenic impacts on GW droughts. The results comprise return periods for Met/GW droughts and their basin-wide spatial distributions, which are delineated into four zones. The information content of the results is statistically significant; and our interpretations hint at the basin resilience is already undermined, as evidenced by (i) subsidence problems and (ii) altering aquifers' interconnectivity with watercourses. These underpin the need for a planning system yet to emerge for mitigating impacts and rectifying their undue damages. The results discern that aquifer depletions stem from mismanagement but not from Met droughts. Already, migration from the basin area is detectable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.