Abstract

Asthma, a common chronic respiratory disease among children and adults, affects more than 200 million people worldwide and causes about 450,000 deaths each year. Machine learning is increasingly applied in healthcare to assist health practitioners in decision-making. In asthma management, machine learning excels in performing well-defined tasks, such as diagnosis, prediction, medication, and management. However, there remain uncertainties about how machine learning can be applied to predict asthma exacerbation. This study aimed to systematically review recent applications of machine learning techniques in predicting the risk of asthma attacks to assist asthma control and management. A total of 860 studies were initially identified from five databases. After the screening and full-text review, 20 studies were selected for inclusion in this review. The review considered recent studies published from January 2010 to February 2023. The 20 studies used machine learning techniques to support future asthma risk prediction by using various data sources such as clinical, medical, biological, and socio-demographic data sources, as well as environmental and meteorological data. While some studies considered prediction as a category, other studies predicted the probability of exacerbation. Only a group of studies applied prediction windows. The paper proposes a conceptual model to summarise how machine learning and available data sources can be leveraged to produce effective models for the early detection of asthma attacks. The review also generated a list of data sources that other researchers may use in similar work. Furthermore, we present opportunities for further research and the limitations of the preceding studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.