Abstract

Machine learning and Artificial Intelligence (AI) already support human decision-making and complement professional roles, and are expected in the future to be sufficiently trusted to make autonomous decisions. To trust AI systems with such tasks, a high degree of confidence in their behaviour is needed. However, such systems can make drastically different decisions if the input data is modified, in a way that would be imperceptible to humans. The field of Adversarial Machine Learning studies how this feature could be exploited by an attacker and the countermeasures to defend against them. This work examines the Fast Gradient Signed Method (FGSM) attack, a novel Single Value attack and the Label Flip attack on a trending architecture, namely a 1-Dimensional Convolutional Neural Network model used for time series classification. The results show that the architecture was susceptible to these attacks and that, in their face, the classifier accuracy was significantly impacted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.