Abstract
Based on recent advances in modern multifunction myoelectric control devices, a combination of effective feature extraction and classification methods is required to enhance the high classification performance, especially in accuracy viewpoint. However, for realizing practical applications of myoelectric control, the effect of long-term usage or reusability is one of the challenging issues that should be more carefully considered, whereas only a few works have investigated this effect in recent. In this study, the behavior of the state-of-the-art multiple feature extraction methods was investigated with the fluctuating electromyography (EMG) signals recorded during four different days with a large number of trials and subjects. To this end, seven multiple feature sets were compared consisting features based on time domain and time-scale representation. Two major points were emphasized: (1) the optimal robust feature set for continuous (both transient and steady-state signals) EMG pattern classification and (2) the effect of fluctuating EMG signals with feature extraction methods for long-term usage. From the classification results, time domain feature sets yielded better performance than time-scale feature sets. The classification accuracies of the time-domain-feature sets had always achieved above 80% by using linear discriminant analysis (LDA) as a classifier and uncorrelated LDA (ULDA) as a dimensionality reduction, whereas the classification accuracies of the time-scale-feature sets were lower than 70% for the fluctuating EMG signals. The effect of dimensionality reduction for the classification of fluctuating EMG signals was also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Fluctuation and Noise Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.