Abstract
AbstractWe investigate the predictability of East African short rains at long (up to 12 month) lead times by relating seasonal rainfall anomalies to climate anomalies associated with the predominant Walker circulation, including sea surface temperatures (SST), geopotential heights, zonal and meridional winds, and vertical velocities. The underlying teleconnections are examined using a regularized regression model that shows two periods of high model skill (0–3-month lead and 7–9-month lead) with similar spatial patterns of predictability. We observe large-scale circulation anomalies consistent with the Walker circulation at short lead times (0–3 months) and dipoles of SST and height anomalies over the Mascarene high region at longer lead times (7–9 months). These two patterns are linked in time by anticyclonic winds in the dipole region associated with a perturbed meridional circulation (4–6-month lead). Overall, these results suggest that there is potential to extend forecast lead times beyond a few months for drought impact mitigation applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.