Abstract

Stretchable form factors enable electronic devices to conform to irregular 3D structures, including soft and moving entities. Intrinsically stretchable devices have potential advantages of high surface coverage of active devices, improved durability, and reduced processing costs. This work describes intrinsically stretchable transistors composed of single-walled carbon nanotube (SWNT) electrodes and semiconductors and a dielectric that consists of a nonpolar elastomer. The use of a nonpolar elastomer dielectric enabled hysteresis-free device characteristics. Compared to devices on SiO2 dielectrics, stretchable devices with nonpolar dielectrics showed lower mobility in ambient conditions because of the absence of doping from water. The effect of a SWNT band gap on device characteristics was investigated by using different SWNT sources as the semiconductor. Large-band-gap SWNTs exhibited trap-limited behavior caused by the low capacitance of the dielectric. In contrast, high-current devices based on SWNTs with smaller band gaps were more limited by contact resistance. Of the tested SWNT sources, SWNTs with a maximum diameter of 1.5 nm performed the best, with a mobility of 15.4 cm2/Vs and an on/off ratio >103 for stretchable transistors. Large-band-gap devices showed increased sensitivity to strain because of a pronounced dependence on the dielectric thickness, whereas contact-limited devices showed substantially less strain dependence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.