Abstract

In binary systems Kirkendall shift is a well-known phenomenon. We investigated nanoscale diffusion in the framework of a recently published continuum model [Erdélyi and Schmitz, Acta. Mater. 60 (2012) 1807]. In thin films the usual vacancy creation and annihilation mechanisms, leading to the Kirkendall shift on larger scales, cannot operate in the same way. On this length-scale the characteristic distances between vacancy sinks and sources can be comparable to the dimension of the sample, causing differences in the development of the Kirkendall effect. Our group recently reported results in simulating nanoscale Kirkendall shift. In present work we show how using conventional method for velocity reconstruction used in multifoil experiments can be misleading if the distribution of vacancy sinks and sources is not uniform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.