Abstract
As the wavelengths of low energy electrons become comparable with the length scale of the mean ionisation step size, each event particle should be treated with care as the condition outlined in Heisenberg's uncertainty principle (HUP) should also be satisfied. Within this quantum-classical regime, spatial delocalisations of individual ionisation event sites that are generated outside the target region are calculated, and particular attention is given to the validity of using classical transport methods in simulations of nanodosimetric parameters such as mean cluster size, first and second moments, variance and cumulative frequency of ionisation cluster-size probability distributions. This paper presents the comparison between conventionally calculated nanodosimetric quantities and the ones where interacting particles are treated semi-classically with spatial uncertainties satisfied by HUP. The simulated primary charged particles are electrons of energies between 100 eV and 1 keV in DNA equivalent target aqueous water volumes using GEANT4-DNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.