Abstract

The vibrational signatures and ultrafast dynamics of the intramolecular H-bond in a series of β-diketones are investigated with 2D IR spectroscopy and computational modeling. The chosen β-diketones exhibit a range of H atom donor-acceptor distances and asymmetry along the H atom transfer coordinate that tunes the intramolecular H-bond strength. The species with the strongest H-bonds are calculated to have very soft H atom potentials, resulting in highly red-shifted OH stretch fundamental frequencies and dislocation of the H atom upon vibrational excitation. These soft potentials lead to significant coupling to the other normal mode coordinates and give rise to the very broad vibrational signatures observed experimentally. The 2D IR spectra in both the OH and OD stretch regions of the light and deuterated isotopologues reveal broadened and long-lived ground-state bleach signatures of the vibrationally hot molecules. Polarization-sensitive transient absorption measurements in the OH and OD stretch regions reveal notable isotopic differences in orientational dynamics. Orientational relaxation was measured to occur on ∼600 fs and ∼2 ps time scales for the light and deuterated isotopologues, respectively. The orientational dynamics are interpreted in terms of activated H/D atom transfer events driven by collective intramolecular structural rearrangements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call