Abstract

Biochanin A (BCA), the most abundant isoflavone in chickpeas, presents a wide range of biological activities, such as hypolipidaemic, anti-oxidative, anti-proliferative, and estrogen-like effects. We investigated the interaction between BCA and human serum albumin (HSA) via several techniques. UV–Vis absorption spectroscopy verified the conformational variation of HSA after BCA addition, and fluorescence spectroscopy revealed the relevant binding parameters. Circular dichroism spectroscopy was used to estimate the secondary structural changes of HSA with and without BCA. Molecular docking and dynamics simulations were then applied to study the characteristics of HSA with BCA. Energy decomposition analysis was used to prove that Trp214 in subdomain IIA of HSA is the most likely binding site of BCA. Van der Waals forces and hydrophobic interactions may play important roles during the binding process. All of our results showed that BCA presents significant binding affinity to HSA, thus confirming that the role of HSA has as an efficient transporter of biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.