Abstract

This work investigates inter-subject and inter-activity variability of a given activity dataset and provides some new definitions to quantify such variability. The definitions are sufficiently general and can be applied to a broad class of datasets that involve time sequences or features acquired using wearable sensors. The study is motivated by contradictory statements in the literature on the need for user-specific training in activity recognition. We employ our publicly available dataset that contains19dailyandsportsactivitiesacquiredfromeightparticipantswhowearfivemotionsensorunits each. We pre-process recorded activity time sequences in three different ways and employ absolute, Euclidean and dynamic time warping distance measures to quantify the similarity of the recorded signal patterns. We define and calculate the average inter-subject and inter-activity distances with various methodsbasedontherawandpre-processedtime-domaindataaswellasontherawandpreprocessed feature vectors. These definitions allow us to identify the subject who performs the activities in the most representative way and pinpoint the activities that show more variation among the subjects. We observe that the type of pre-processing used affects the results of the comparisons but that the different distance measures do not alter the comparison results as much. We check the consistency of our analysis and results by highlighting some of our activity recognition rates based on an exhaustive set of sensor unit, sensor type and subject combinations. We expect the results to be useful for dynamic sensor unit/type selection, for deciding whether to perform user-specific training and for designing more effective classifiers in activity recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.