Abstract

Abstract Propagation characteristics of a detonation wave in an air-breathing rotating detonation combustor (RDC) using natural gas (NG)–hydrogen fuel blends is presented in this paper. Short-duration (∼up to 6 s) experiments were performed on a 152.4 mm OD uncooled RDC with two different annulus gap widths (5.08 mm and 7.62 mm) over a range of equivalence ratios (0.6–1.0) at varying inlet air temperatures (∼65–204 °C) and NG content (up to 15%) with precombustion operating pressure slightly above ambient. It was observed that the RDC, with an annulus gap width of 5.08 mm, was inherently unstable when NG was added to the hydrogen fuel while operating at precombustion pressures near ambient and at an inlet air temperature of 65 °C. Increasing the annulus gap width to 7.62 mm improved the stability of the detonation wave at similar temperatures and pressure permitting operation with as much as 5% NG by volume. While observed speeds of the detonation waves were still below theoretical values, an increase in inlet air temperature reduced the variability in wave speed. The frequency analysis thus explored in this study is an effort to quantify detonation instability in an RDC under varying operational envelope. The data presented are relevant toward developing strategies to sustain a stable detonation wave in an RDC using NG for land-based power generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.