Abstract
Current approaches of phishing filters depend on classifying messages based on textually discernable features such as IP-based URLs or domain names as those features that can be easily extracted from a given phishing message. However, in the same sense, those easily perceptible features can be easily manipulated by sophisticated phishers. Therefore, it is important that universal patterns of phishing messages should be identified for feature extraction to serve as a basis for text classification. In this paper, we demonstrate that user perception regarding phishing message can be identified in central and peripheral routes of information processing. We also present a method of formulating quantitative model that can represent persuasive information structure in phishing messages. This paper makes contribution to phishing classification research by presenting the idea of universal information structure in terms of persuasive communication theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.