Abstract

The paper proposes a new class of continuous-time asset pricing models where whenever there is a negative jump in asset returns, it is simultaneously passed on to diffusion variance and the jump intensity, generating co-jumps of prices and volatility and jump clustering. To properly deal with parameter uncertainty and hindsight bias, we employ a Bayesian learning approach, which generates all quantities necessary for sequential real-time model analysis. Empirical study using S&P 500 index returns shows that volatility jumps at the same time as negative jumps in asset returns mainly through jumps in diffusion volatility. We find weak evidence of jump clustering. Learning and parameter uncertainty are shown to have important implications for risk management, option pricing and volatility forecasting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.