Abstract

Accurate detection of mediated haptic information in minimally invasive surgery (MIS) is critical for applying appropriate force magnitudes onto soft tissue with the aim of minimising tissue trauma. Force perception in MIS is a dynamic process, with surgeons’ administration of force into tissue revealing information about the remote surgical site which further informs the surgeons’ haptic interactions. The relationship between applied force and material deformation rate provides biomechanical information specifying the deformation distance remaining until a tissue will fail: which is termed distance-to-break (DTB). The current study demonstrates that observers can detect DTB while deforming simulated tissues and stop before reaching the tissues’ failure points. The design of training simulators, control devices and automated robotic systems for applications outside of MIS is discussed.Practitioner Summary: In MIS, haptic information is critical for applying appropriate forces onto soft tissue to minimise tissue trauma. Observers used force information to detect how far they could deform a virtual tissue before it would break. The design of training simulators, control devices and automated robotic systems is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call