Abstract

Modelling groundwater-surface water (GW-SW) interactions at scales of large river basins is a difficult challenge. In this study, a fully-integrated surface water-groundwater model accounting for hydrologic seasonality is developed for the 766,000 km2 Laurentian Great Lakes basin, and applied towards the characterization of groundwater-lake (GW-lake) interactions in the five Great Lakes under monthly normal climatology. The simulated annual average rates of direct groundwater discharge to Lakes Superior, Michigan, Huron, Erie and Ontario through the combined lakebed and 8 km wide band of shoreline surrounding each lake are 29.0, 38.6, 24.5, 11.9, and 11.6 m3/s, respectively. Thus, direct groundwater discharge accounts for a small component of positive basin supply; ranging from 0.6% for Lake Ontario to 1.3% for Lake Michigan, with an overall average of 0.8% for all lakes combined. Simulation results demonstrate that GW-lake interactions are strongest nearshore, and vary temporally in response to seasonal fluctuations in both lake levels and terrestrial groundwater levels in nearshore regions. In winter, direct groundwater discharge dominates the GW-lake interactions in both the distal and nearshore lakebed areas. In summer, the combined effects of rising lake levels and lowering terrestrial groundwater levels lead to notable reductions in direct groundwater discharge through nearshore areas. Direct groundwater discharge is also shown to vary spatially, with highest rates associated with areas containing thick Phanerozoic hydrostratigraphy, as opposed to Precambrian basement rock. The results from this study indicate that the Great Lakes primarily act as groundwater receivers, gaining considerable amounts of water directly from the basin’s groundwater system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.