Abstract

In this paper, we study the generalization properties of neural networks under input perturbations and show that minimal training data corruption by a few pixel modifications can cause drastic overfitting. We propose an evolutionary algorithm to search for optimal pixel perturbations using novel cost function inspired from literature in domain adaptation that explicitly maximizes the generalization gap and domain divergence between clean and corrupted images. Our method outperforms previous pixel-based data distribution shift methods on state-of-the-art Convolutional Neural Networks (CNNs) architectures. Interestingly, we find that the choice of optimization plays an important role in generalization robustness due to the empirical observation that SGD is resilient to such training data corruption unlike adaptive optimization techniques (ADAM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.