Abstract

Density functional theory (DFT) calculations were performed to investigate electronic and structural properties of barbituric acid (BA) and sixtheen of its derivatives to show impacts of structural functionalization on the features of parent BA. The models were optimized and the minimum energy structures were confirmed by frequency calculations. Molecular and atomic descriptors were evaluated for the optimized models, in which the results of formation binding strength and molecular orbital features indicated significance of such functionalization processes on the observed properties. The highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) and their related parameters all indicated magnitudes of changes from one molecule to another one. Furthermore, atomic scale quadrupole coupling constants (Cq) were evaluated for the nitrogen and oxygen atoms of BA compounds showing significance of structural functionalization impacts on the atomic properties of parent BA. As a consequence, such structural analyses of BA compounds could show their characteristic features for further developments especially for their efficient pharmaceutical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call