Abstract
The fracture strength of poly-silicon as widely used membrane material in micro electro mechanical system applications has a critical impact in respect to design, function and reliability of e.g. pressure sensors or microphones. This circumstance necessitates the investigation of the fracture strength of these poly-silicon membranes. In this study the strength was investigated by experimental tests and numerical simulations. A new fracture test has been developed that applies a well-defined and almost constant stress within a certain region of the membrane and prevent a cracking of the membrane at the edge. The brittle behavior of poly-silicon needs a statistical evaluation of the results. To this end, a set of 45 membranes was tested at each of the three positions on the wafer in order to assure statistical accuracy and to evaluate the strength distribution across the wafer. The experimental loading tests were attended by scanning electron microscopy to examine the microstructure and the crack path. Using finite element simulation, the non-linear deformation behavior during membrane loading was analyzed and the fracture stresses were calculated. In the final step the obtained results were statistically evaluated by means of a two-parametric Weibull distribution. High values were found for the characteristic fracture stresses. They are in the range of 5400---6000 MPa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.