Abstract

In order for cells to react to topography, they must be able to sense shape. When considering nano-topography, these shapes are much smaller than the cell, but still strong responses to nano-topography have been seen. Filopodia, or microspikes, presented by cells at their leading edges are thought to be involved in gathering of special information. In order to investigate this, and to develop an understanding of what size of feature can be sensed by cells, morphological observation (electron and fluorescent microscopy) of fibroblasts reacting to nano-pits with 35, 75 and 120 nm diameters has been used in this study. The nano-pits are especially interesting because unlike many of the nanofeatures cited in the literature, they have no height for the cells to react to. The results showed that cell filopodia, and retraction fibres, interacted with all pit sizes, although direct interaction was hard to image on the 35 nm pits. This suggests that cells are extremely sensitive to their nanoevironment and that should be taken in to consideration when designing next-generation tissue engineering materials. We suggest that this may occur through nanocontact guidance as filopodia are moved over the pits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.