Abstract

Analysis of spontaneous fluctuations in systolic arterial pressure (SAP) and pulse interval (PI) reveals the occurrence of sequences of consecutive beats characterized by SAP and PI changing in the same (+PI/+SAP and -PI/-SAP) or opposite (-PI/+SAP and +PI/-SAP) direction. Although the former reflects baroreflex regulatory mechanisms, the physiological meaning of -PI/+SAP and +PI/-SAP is unclear. We tested the hypothesis that -PI/+SAP and +PI/-SAP "nonbaroreflex" sequences represent a phenomenon modulated by the autonomic nervous system reflecting a feed-forward mechanism of cardiovascular regulation. We studied anesthetized rabbits before and after (1) complete autonomic blockade (guanethidine+propranolol+atropine, n=13; CAB), (2) sympathetic blockade (guanethidine+propranolol, n=15; SB), (3) parasympathetic blockade (atropine, n=16), (4) sinoaortic denervation (n=10; SAD), and (5) controlled respiration (n=10; CR). Nonbaroreflex sequences were defined as >/=3 beats in which SAP and PI of the following beat changed in the opposite direction. CAB reduced the number of nonbaroreflex sequences (19. 1+/-12.3 versus 88.7+/-36.6, P<0.05), as did SB (25.3+/-11.7 versus 84.6+/-23.9, P<0.001) and atropine (11.2+/-6.8 versus 94.1+/-32.4, P<0.05). SB concomitantly increased baroreflex sensitivity (1.18+/-0. 11 versus 0.47+/-0.09 ms/mm Hg, P<0.01). SAD and CR did not significantly affect their occurrence. These results suggest that nonbaroreflex sequences represent the expression of an integrated, neurally mediated, feed-forward type of short-term cardiovascular regulation able to interact dynamically with the feedback mechanisms of baroreflex origin in the control of heart period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call