Abstract

Abstract The flow and turbulence structure in the atmospheric boundary layer over complex mountainous terrain determines Earth–atmosphere interaction, that is, the exchange of energy, mass, and momentum between the surface over such terrain and the free atmosphere. Numerical models for weather and climate, even when operated at high or very high grid resolution, are known to be deficient, leading to inaccurate local forecasts (weather) or scenarios (climate). The nature and reasons for these deficiencies, however, are difficult to assess because systematic and long-term combined observational/modeling studies in mountainous terrain are missing. The Innsbruck Box (i-Box) project aims at filling in this gap through a network of long-term turbulence sites in truly complex terrain, complemented by similarly continuous (surface based) remote sensing and numerical modeling at high to highest [i.e., large-eddy simulation (LES)] resolution. This contribution details the i-Box approach, the experimental design, and available data, as well as the numerical modeling strategy. The first scientific highlights are presented to illustrate the potential of the i-Box data pool and possible future directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call