Abstract

Abstract This work investigates the ternary hybrid nanofluid flow over an extending curved surface. The surface is impermeable and convective with hot working fluid water. Additionally, TiO 2 {\text{TiO}}_{\text{2}} , CoFe 2 O 4 {\text{CoFe}}_{\text{2}}{\text{O}}_{\text{4}} , and MgO \text{MgO} nanoparticles are suspended with water to form a tri-hybrid nanofluid. The modeled equations are presented in the partial differential equation form and are then converted to ordinary differential equations with appropriate similarity variables. The semi-analytical solution is determined by homotopy analysis method. The impacts of magnetic field, Joule heating, chemical reaction, Brownian motion, and thermophoresis on flow profiles, Nusselt number, and Sherwood number are determined using tables and figures. The findings of this study demonstrated that as the magnetic parameter upsurges, the velocity distribution shrinkages, while the temperature distribution escalates. The greater curvature factor boots the velocity, thermal, and volumetric fraction distribution. The thermal and volumetric fraction distributions are the increasing functions of thermophoresis factor. The higher magnetic factor, Eckert number, and thermal Biot number increase the Nusselt number, while they reduce the higher Brownian and thermophoretic factors. The higher thermophoresis and Brownian motion factors heighten the Sherwood number. Furthermore, it has been noted that using nanofluid (TiO2-water) and hybrid nanoliquid (TiO2-CoFe2O4/water), the transfer of energy rate increases by up to 17.31 and 31.72% as the nanoparticle parameter increases from 0.01 to 0.04, respectively. However, the energy transference rate in case of ternary hybrid nanoliquid (TiO2-MgO-CoFe2O4/water) is 47.972%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call