Abstract

Spontaneous gestures produced during mathematics learning have been widely studied, however, research on the role of gesture in computing education is limited. This paper presents an investigation into children's use of spontaneous gestures when learning programming using either a tangible user interface (TUI) or a graphical user interface (GUI). The study explored the relationship between spontaneous gestures, interface type and learning outcomes in a programming lesson for primary school students aged 6-7. In the study, 34 participants engaged in a learning activity lasting approximately 37 minutes, using a TUI or a GUI. The study used a between-subjects design, and mixed methods. Pre-test and post-test data were collected, and sessions were video recorded and subsequently coded and analysed. A video analysis scheme, adapted from mathematics education research, was used to code the spontaneous gestures produced during the learning session. We found a statistically significant difference between the mean learning gains of high-frequency gesturers and low-frequency gesturers, with the top quartile showing significantly greater learning gains. There was no significant difference in the frequency of gestures between interface types. A qualitative analysis of representational gestures showed that some children use spontaneous hand gestures to demonstrate abstract computational concepts, providing evidence for the embodiment of children's offline thinking in the computing domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call