Abstract
A facile and eco-friendly synthesis of PW12/TiO2@MgCO3 hollow tubes (PW12·∼· H3[PW12O40] = polyoxometalate) using a soluble and reusable MgCO3·3H2O micro-rods template was reported for the first time. The resultant hollow tubes were characterized by Fourier transform infrared spectroscopy (FT-IR), UV–visible spectroscopy, powder X-ray diffraction (PXRD), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM), which indicated that the [PW12O40]3- structure remained intact within the hollow tubes. Furthermore, the specific surface area (88.982 m2/g) and average pore size (2.6 nm) of the PW12/TiO2@MgCO3 hollow tubes were calculated using the Brunauer-Emmett-Teller (BET) analysis. This study explored the catalytic performance of PW12/TiO2@MgCO3 hollow tubes using a three-level Box-Behnken design (BBD), through which optimization curves were designed. The desulfurization of model fuel using hollow tubes was optimally performed when the catalyst dose, time, temperature, and oxidant/sulfur (O/S) were 20–80 gm, 80–120 min, 25–80 °C and 3–8 molar ratio, respectively. These results were further processed, and the experiments were replicated twenty-nine times using a model based on two quadratic polynomials to create a response surface methodology (RSM). This permits a mathematical correlation linking the desulfurization and experimental parameters. The optimal performance of reaction mixture was evaluated to be 80 mg for catalyst concentration, 25 °C of temperature, reaction time of 100 min, and 5.5 for oxidant/sulfur molar ratio from 20 mL of octane simulation oil containing 350 ppm dibenzothiophene (DBT). The predicted desulfurization rate of the model fuel under these optimal conditions was 95.3%. The correspondence between the experimental results and predicted values was verified based on regression analysis, with an R2 value greater than 0.99. These hollow tubes could be used for their desulfurization properties ten times a row without significantly reducing catalytic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.