Abstract

Elastomeric proteins are widespread in the animal kingdom, and their main function is to confer elasticity and resilience to organs and tissues. Besides common functional properties, elastomeric proteins share a common sequence design. They are usually constituted by repetitive sequences with a high content of glycine residues. From a conformational point of view, all the elastomeric proteins since now analyzed show a dynamic equilibria between folded (mainly beta-turns) and extended (polyproline II and beta-strands) conformations that could be at the origin of the high entropy of the relaxed state. As a matter of fact, elastin, lamprin, abductin, as well as the PEVK domain of titin share the same conformational ensemble, thus pointing to a common molecular mechanism as the origin of elasticity. CD spectroscopy represents the proper spectroscopic technique to be used overall because of its particular sensitivity to the presence of PPII structure. Its use in the molecular studies of elastin, abductin, and lamprin as well as the recently analyzed protein resilin will be presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.