Abstract

As the aging populations, both nationwide and worldwide, rapidly increase, falls leading to unintentional injury and death subsequently increase. Thus, developing an understanding of biomechanical postural control strategies used to maintain balance in aging healthy adults, and those that have suffered stroke, are critical. Here, we were interested in how one’s body segments stabilize relative to one another, and in space, in order to maintain balance. To accomplish this goal, we studied 30 healthy individuals and 8 survivors of stroke between 60 and 85 years old, both before and after several weeks of sensory training. Motion capture data were acquired to assess participants’ body kinematics during walking: forward (easiest), forward-tandem, backward, and backward-tandem walking (most challenging). Deviations (via the observation of the absolute angle with deviations, or AADs) of the head, thorax, and lumbar areas relative to an earth vertical reference, as well as how one body segment stabilized in space or relative to the inferior body segment (via the observation of anchoring indices, or AIs), were explored. The results provide metrics (AADs and AIs) that can assess aging posture. Further, the results show an initial indication that, for aging individuals, training could lead to improved head and body stabilization in space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call