Abstract

Although hydropower is a clean source of energy, in some cases, it can jeopardize the life of some species of riverine fish. Very Low Head (VLH) water turbine is an innovative design that aims at reducing the adverse effects of such hydroelectric facilities. In this research, two methodologies are integrated to investigate barotrauma in juvenile salmons passing through this particular turbine. First, to quantify barotrauma, we implement a method known as BioPA (Biological Performance Assessment) by combining the results of some laboratory experiments on juvenile Chinook salmon moving through a simulated turbine passage with the Computational Fluid Dynamics (CFD) simulation of the flow field in this environment. In the second part, we added surrogate-based modeling as a tool, which enabled us to study the effects of two geometrical parameters on the environmental performance of the VLH turbine with low computational costs. The results indicate a significant dependency between the installation angle of the VLH turbine and the severity of the barotrauma of this particular fish. In addition, further investigations suggest that the region near the middle of blades is the safest for fish in the case of decompression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call