Abstract
Recently released autonomous vehicle datasets like Waymo can provide rich information (and unprecedented opportunities) to investigate lane-changing behaviour of autonomous vehicles, requiring data from multiple drivers and lanes with different objectives. As such, the study investigates the discretionary lane-changing execution behaviour of autonomous vehicles and compares its behaviour with human-driven vehicles from Waymo and Next Generation Simulation (NGSIM) datasets. Several behavioural factors are statistically analysed and compared, whereas the discretionary lane-changing execution time (or duration) is modelled by a random parameters hazard-based duration modelling approach, which accounts for unobserved heterogeneity. Descriptive analyses suggest that autonomous vehicles maintain larger lead and lag gaps, longer discretionary lane-changing execution time, and lower acceleration variation than human-driven vehicles. The random parameters duration model reveals heterogeneity in discretionary lane-changing execution behaviour, which is higher in human-driven vehicles but decreases significantly for autonomous vehicles. Whilst contradictory to a general hypothesis in the literature that autonomous vehicles will eliminate heterogeneity, our finding indicates that heterogeneous behaviour also exists in autonomous vehicles (although to a lesser extent than in human-driven vehicles), which can be contextual to prevailing traffic conditions. Overall, autonomous vehicles show safer discretionary lane-changing behaviour compared to human-driven vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.