Abstract

Solid phase extraction (SPE) sample preparation for the analysis of complex organic mixtures is often applied assuming all analytes of interest will preconcentrate on the stationary phase. This assumption ignores the reality that extraction is a dynamic interactive process and a diverse range of affinities for the stationary phase will result in equally diverse breakthrough volumes due to competitive sorption processes. To study this dynamic interactive process, and further to take advantage of it, we extracted a JP-8 jet fuel spiked with 40 ppm of a polar compound mix with silica and alumina SPE cartridges and analyzed sequential extracted fractions of the fuel to both assess the shifting chemical landscape present in the extraction and the impact of both SPE stationary phases on this process. Tile-based 1v1 comparative analysis (a recently reported extension of tile-based Fisher ratio analysis) was used to discover the (polar) compounds whose concentrations change between extracted fractions, discovering 21 compounds extracted with silica and 27 compounds extracted with alumina with at least a 2-fold change in concentration from the neat sample relative to the first 1 mL pass fraction sample. These compounds were quantified in each fraction to construct concentration ratio profiles, defined as the concentration ratio for a given SPE fraction per analyte compound relative to the analyte concentration in the neat fuel, for which the extraction behavior for each analyte could be assessed. These analyte compounds were found to breakthrough at different rates, with some analytes remaining on the column indefinitely (until extracted with a subsequent polar solvent) and other analytes eluting before the extraction is complete. Furthermore, in a comparison of the effect of selected stationary phase, alumina was found to retain oxygen-containing phenolic compounds to a greater extent than silica. Principal component analysis (PCA) was used to analyze the concentration ratio profiles of the various trace analytes in the JP8 fuel (phenols, indoles, etc.) in the context of their stationary phase affinity (silica or alumina) and competitive sorption behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call