Abstract
Abstract. Aviation has a large impact on the Earth's atmosphere and climate by various processes. Line-shaped contrails and contrail cirrus clouds lead to changes in the natural cirrus cloud cover and have a major contribution to the effective radiative forcing from aviation. In addition, aviation-induced aerosols might also change the microphysical properties and optical properties of naturally formed cirrus clouds. Latter aerosol–cloud interactions show large differences in the resulting effective radiative forcing, and our understanding on how aviation-induced aerosols affect cirrus cloud properties is still poor. Up to now, observations of this aviation-induced aerosol effect have been rare. In this study, we use combined airborne lidar and in situ ice cloud measurements to investigate differences in the microphysical and optical properties of naturally formed cirrus clouds, which formed in regions that are highly affected by aviation-induced aerosol emissions and, of those, which formed in regions rather unaffected by aviation. Urbanek et al. (2018) showed that those cirrus clouds, which are more affected by aviation-induced soot emission, are characterized by larger values of the particle linear depolarization ratio (PLDR). In this follow-on study we relate collocated lidar measurements performed aboard HALO during the ML-CIRRUS mission of the particle linear depolarization ratio with in situ cloud probe measurements of the number concentration and effective diameter of the ice particles. In situ measurements for both cloud types (high-PLDR-mode – aviation-affected – and low-PLDR-mode – pristine – cirrus) can be reliably compared in a temperature range between 210 and 215 K. Within this temperature range we find that high-PLDR-mode cirrus clouds tend to show larger effective ice particle diameters with a median value of 61.4 compared to 50.7 µm for low-PLDR-mode pristine cirrus clouds. Larger effective ice particles in aviation-influenced (high-PLDR-mode) cirrus are connected to lower ice particle number concentration with a median value of 0.05 compared to 0.11 cm−3 (low-PLDR-mode), which evolved in more pristine regions with only little impact from aviation. We suspect that a suppression of homogeneous ice formation by the heterogeneously freezing soot aerosol particles included in the areas affected by air traffic is the cause of the reduced ice crystal concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.